爱游戏雒建斌院士:“螺旋桨表界面特性研究进展与科学挑战”—新闻—科学网

时间:2024-01-13 14:37:54 已阅读:77次

雒建斌 清华年夜学传授,长江学者,中国科学院院士,Friction主编。持久从事纳米磨擦学以及纳米打造研究。

朱漫福 清华年夜学磨擦学国度重点试验室于读玻士研究生。研究标的目的为表界面特征调控以及螺旋桨机能优化。

摘 要

螺旋桨是船舶以及水下飞行体的经常使用推进装配,经由过程扭转做功孕育发生推力。螺旋桨机能晋升可以削减能源耗损以及运转成本、提高搭船恬静性以及舰船声隐身性,于平易近用以及军用范畴有显著需求。表界面特征是影响螺旋桨机能的要害要素,然而,今朝对于螺旋桨表界面特征的研究还存于诸多有余。本文安身在螺旋桨的效率以及空化空蚀机能,先容了外貌描摹以及外貌润湿性对于螺旋桨机能的影响纪律以及研究进展,阐发了螺旋桨表界面特征研究中存于的要害科学问题,终极对于螺旋桨将来成长趋向举行了瞻望。

要害词:螺旋桨;外貌描摹;润湿性;效率;空化

参 考 文 献

[1] Xu MC, Grabowski A, Yu N, et al. Superhydrophobic drag reduction for turbulent flows in open water. Physical Review Applied, 2020, 13(3): 034056.

[2] 黄胜. 船舶推进节能技能与特种推进器. 第2版. 哈尔滨: 哈尔滨项目年夜学出书社, 2007.

[3] 胡健. 螺旋桨空泡机能及低噪声螺旋桨设计研究. 哈尔滨: 哈尔滨项目年夜学, 2006.

[4] 刘竹青, 丁恩宝, 陈奕宏. 某散货船模子螺旋桨噪声机能实验研究. 中国造船, 2011, 52(S1): 83 88.

[5] 侯晓琨, 吴家鸣, 戴鹏. 反转展转体尾部外形对于导管螺旋桨的水动力机能影响阐发. 广州帆海学院学报, 2020, 28(1): 14 19+65.

[6] Suryanarayana C, Satyanarayana B, Ramji K, et al. Experimental evaluation of pumpjet propulsor for an axisy妹妹etric body in wind tunnel. International Journal of Naval Architecture and Ocean Engineering, 2010, 2(1): 24 33.

[7] 何东亚, 万德成. 差别设计参数下对于转桨水动力机能研究. 海洋项目, 2018, 36(2): 19 29.

[8] 盛振邦. 船舶道理(下册). 第2版. 上海: 上海交通年夜学出书社, 2019.

[9] Wang JD, Wang B, Chen DR. Underwater drag reduction by gas. Friction, 2014, 2(4): 295 309.

[10] Daniello RJ, Waterhouse NE, Rothstein JP. Drag reduction in turbulent flows over superhydrophobic surfaces. Physics of Fluids, 2009, 21(8): 085103.

[11] Henoch C, Krupenkin T, Kolodner P, et al. Turbulent drag reduction using superhydrophobic surfaces// American Institute of Aeronaustics and Astronaustics 3rd AIAA Flow Control Conference. California: AIAA, 2006: 3192.

[12] Park H, Sun GY, Kim CJ. Superhydrophobic turbulent drag reduction as a function of surface grating parameters. Journal of Fluid Mechanics, 2014, 747: 722 734.

[13] Xu MC, Yu N, Kim J, et al. Superhydrophobic drag reduction in high-speed towing tank. Journal of Fluid Mechanics, 2021, 908, A6. doi:10.1017/jfm.2020.872.

[14] Balasubramanian AK, Miller AC, Rediniotis OK. Microstructured hydrophobic skin for hydrodynamic drag reduction. AIAA Journal, 2004, 42(2): 411 414.

[15] Aljallis E, Sarshar MA, Datla R, et al. Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow. Physics of Fluids, 2013, 25(2): 351 412.

[16] Bidkar RA, Leblanc L, Kulkarni AJ, et al. Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces. Physics of Fluids, 2014, 26(8): 263 290.

[17] Sooraj P, Jain S, Agrawal A. Flow over hydrofoils with varying hydrophobicity. Experimental Thermal and Fluid Science, 2019, 102: 479 492.

[18] Choi H, Lee J, Park H. Wake structures behind a rotor with superhydrophobic-coated blades at low Reynolds number. Physics of Fluids, 2019, 31(1): 015102.

[19] 朱晶, 姜元军, 何年夜川. 船用螺旋桨典型腐化类型与防护办法研究进展. 腐化科学与防护技能, 2019, 31(4): 443 448.

[20] AkzoNobel. Intersleek1100SR. (2013-02)/[2021-03-12]. https://www.international-marine.com/product/intersleek-1100sr.

[21] AkzoNobel. Intersleek900. (2010-08)/[2021-03-12]. https://www.international-marine.com/product/intersleek-970.

[22] Pechook S, Sudakov K, Polishchuk I, et al. Bioinspired passive anti-biofouling surfaces preventing biofilm formation. Journal of Materials Chemistry B, 2015, 3(7): 1371 1378.

[23] Epstein AK, Wong TS, Belisle RA, et al. Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(33): 13182 13187.

[24] Hwang GB, Page K, Patir A, et al. The anti-biofouling properties of superhydrophobic surfaces are short-lived. Acs Nano, 2018, 12(6): 6050 6058.

[25] Atlar M, Glover EJ, Candries M����Ϸapp, et al. The effect of a foul release coating on propeller performance// International conference on Marine Science and Technology for Environmental Sustainability (ENSUS 2002). Newcastle upon Tyne: University of Newcastle upon Tyne, 2002.

[26] Korkut E, Atlar M. An experimental investigation of the effect of foul release coating application on performance, noise and cavitation characteristics of marine propellers. Ocean Engineering, 2012, 41: 1 12.

[27] Candries M, Atlar M, Mesbahi E, et al. The measurement of the drag characteristics of tin-free self-polishing co-polymers and fouling release coatings using a rotor apparatus. Biofouling, 2003, 19(S1): 27 36.

[28] 陈年夜融. 空化与空蚀研究. 中国根蒂根基科学, 2010, 12(6): 3 7.

[29] Holl JW. The inception of cavitation on isolated surface irregularities. Journal of Basic Engineering, 1960, 82(1): 169 183.

[30] McCormick BW. On cavitation produced by a vortex trailing from a lifting surface. Journal of Basic Engineering, 1962, 84(3): 369 378.

[31] Kawanami Y. Mechanism and control of cloud cavitation. Journal of Fluids Engineering, 1997, 236(4): 788 794.

[32] 戴月进, 张媛媛, 黄典贵. 水翼外貌粗拙带对于空化按捺效果的数值研究. 项目热物理学报, 2012, 33(5): 770 773.

[33] Churkin SA, Pervunin KS, Kravtsova AY, et al. Cavitation on NACA0015 hydrofoils with different wall roughness: high-speed visualization of the surface texture effects. Journal of Visualization, 2016, 19(4): 587 590.

[34] 刘诗汉, 陈年夜融. 粗拙外貌的空蚀机制研究. 润滑与密封, 2009, 34(3): 6 8.

[35] 蒋娜娜, 刘诗汉, 陈年夜融. 硅片空蚀试验中外貌粗拙度以及润湿性的影响. 科学传递, 2008, (5): 598 604.

[36] 蒋娜娜, 徐臻, 周刚, 等. 加工要领以及质料品种对于空蚀成果的影响. 润滑与密封, 2007, (5): 12 15.

[37] 李永健. 空蚀发生历程中外貌描摹作用机理研究.北京: 清华年夜学, 2009.

[38] Harvey EN, McElroy WD, Whiteley AH. On cavity formation in water. Journal of Applied Physics, 1947, 18(2): 162 172.

[39] Belova V, Gorin DA, Shchukin DG, et al. Controlled effect of ultrasonic cavitation on hydrophobic/hydrophilic surfaces. Acs Applied Materials Interfaces, 2011, 3(2): 417 425.

[40] Ye YM, Klimchuk S, Shang MW, et al. Acoustic bubble suppression by constructing a hydrophilic coating on HDPE Surface. Acs Applied Materials Interfaces, 2019, 11(18): 16944 16950.

[41] Klimchuk S, Shang MW, Samuel MS, et al. Robust hybrid hydrophilic coating on a high-density Polyethylene surface with enhanced mechanical property. Acs Applied Materials Interfaces, 2020, 12(28): 32017 32022.

[42] Petkovek M, Hoevar M, Gregori P. Surface functionalization by nanosecond-laser texturing for controlling hydrodynamic cavitation dynamics. Ultrasonics Sonochemistry, 2020, 67: 105126.

[43] Haosheng. C, Jiang. L, Fengbin. L, et al. Experimental study of cavitation damage on hydrogen-terminated and oxygen-terminated diamond film surfaces. Wear, 2008, 264(1 2): 146 151.

[44] Fahim J, Hadavi SMM, Ghayour H, et al. Cavitation erosion behavior of super-hydrophobic coatings on Al5083 marine aluminum alloy. Wear, 2019, 424: 122 132.

[45] Ma LW, Wang JK, Zhang ZJ, et al. Preparation of a superhydrophobic TiN/PTFE composite film toward self-cleaning and corrosion protection applications. Journal of Materials Science, 2021, 56(2): 1413 1425.

[46] Wang N, Xiong DS, Deng YL, et al. Mechanically robust superhydrophobic steel surface with anti-Icing, UV-durability, and corrosion resistance properties. Acs Applied Materials Interfaces, 2015, 7(11): 6260 6272.

[47] Liu T, Chen S, Cheng S, et al. Corrosion behavior of super-hydrophobic surface on copper in seawater. Electrochimica Acta, 2007, 52(28): 8003 8007.

[48] 林昌健, 田昭武. 金属腐化与防护机理研究中的现代电化学新要领. 中国科学基金, 1993, 7(2): 106 110.

[49] Gonzalez-Avila SR, Nguyen DM, Arunachalam S, et al. Mitigating cavitation erosion using biomimetic gas-entrapping microtextured surfaces (GEMS). Science Advances, 2020, 6(13): eaax6192.

出格声明:本文转载仅仅是出在流传信息的需要,其实不象征着代表本消息网不雅点或者证明其内容的真实性;如其他媒体、消息网或者小我私家从本消息网转载使用,须保留本消息网注明的 来历 ,并自大版权等法令义务;作者假如不但愿被转载或者者接洽转载稿费等事宜,请与咱们联系。/爱游戏